Cancer Treatment

Kristine B. LeFebvre, DNP, RN, NPD-BC, AOCN

CENTRAL CONNECTICUT CHAPTER

Objectives

CENTRAL CONNECTICUT CHAPTER Compare modalities of cancer treatment

Describe advantages of one treatment modality over another for specific types of cancer

Identify the nurse's role in cancer treatment

Treatment Approaches

Goal:
Prevention
Cure
Control
Palliation

CENTRAL CONNECTICUT CHAPTER

National Cancer Institute Types of Cancer Treatment

	Surgery	Radiation Therapy	Stem Cell Transplantation	Chemotherapy	Targeted Therapy	Immunotherapy
Description	Local therapy, oldest type of cancer treatment. Primary treatment for solid tumors.	Usually local therapy, one of the earliest types of therapy. Ability to focus in on treatment area.	Use of high dose chemo and radiation therapy to eradicate disease. Stem cells are infused to replace or rebuild the bone marrow and rescue the patient from severe SE's.	Usually systemic therapy, may be regional. Drugs given via multiple routes.	Systemic therapy. Drugs that target select molecular pathways to disrupt cancer cell reproduction. Focus on oral agents.	Usually systemic therapy using the patient's immune system to kill cancer cells.
Types	Diagnosis Curative Preventative Palliative Restorative Emergency	External beam Proton therapy Neutron therapy Brachytherapy Radiopharmaceuticals	 Autologous - self as donor Allogeneic - other donor Matched sibling Identical twin Partially matched family member Matched unrelated donor 	Cell-cycle specific Cell-cycle nonspecific Alkylating agents Antimetabolites Antitumor antibiotics Miscellaneous Nitrosoureas Plant alkaloids	Oral antineoplastics - Small molecule inhibitors TKI's RTKs mTOR Proteasome inhibitors PARP Inhibitors CDK4/6	Cytokines Monoclonal antibodies Checkpoint inhibitors CAR T-Cell Immunotherapy Adoptive cellular therapy Oncolytic viral therapy
Approaches	Open resection Laparoscopic Robotic Endoscopic Laser Ablative	IMRT, IGRT Megavoltage external beam Stereotactic radiosurgery Proton Therapy SRT, SBRT Cyberknife	Bone marrow Peripheral Blood Stem Cells Umbilical Cord Blood	Single-agent chemo Combination chemo Neoadjuvant Adjuvant High dose Dose dense	Oral therapies Requires extensive patient and family education Adherence important issue	Checkpoint inhibitors and monoclonal antibodies are infused via IV route. Cytokines are given sq or infused.
Treatment details	Physical exam Interventional radiology Safety and management Postanesthesia recovery	Radiobiology Fractionation Treatment planning Simulation Positioning Dose administration Radiation safety	Cell collection Cryopreservation Conditioning (high-dose treatment) Marrow aplasia Engraftment Recovery	Administration safety Dose calculation Dose verification Patient education Safe handling of hazardous drugs	Drug interactions Comorbidities Symptom management	Specific training, facilities, procedures are required for CAR T-Cell Immunotherapy, adoptive cellular therapy and oncolytic viral therapy.
Notable side effects or complic- ations	Safety procedures and communication required around OR environment. Monitor patient status pre- and post-op. Preventative measures for lungs and VTE prophylaxis.	Skin changes - erythema, dry desquamation, moist desquamation, pruritis, hyperpigmentation, alopecia Fatigue Site-specific side effects - due to damage in the radiation field	Infection Bone marrow suppression Hepatic sinusoidal obstruction syndrome Organ toxicity Mucositis Idiopathic pulmonary interstitial pneumonitis Graft vs. Host Disease	Bone marrow suppression, GI toxicities, cardiac, pulmonary, hepatic, genitourinary, sexual and reproductive, cutaneous, endocrine, fatigue, neurological, ocular	EGFRI Skin reactions Cardiac toxicities Fluid retention Mucositis Diarrhea	Immune-related adverse events Infusion reactions Skin rash Hepatic toxicity Fatigue Pneumonitis GI toxicity

Sources: Brant, 2020; Eggert et al., 2022; McQuestion et al, 2021; Olsen et al, 2023; Yarbro et al, 2018.

Surgery

Surgery - Principles

- Primary treatment for most solid tumors
- Surgical Team
- Define
 - Goal of surgery
 - Functional importance of involved organ or structure
 - Ability to restore function
 - Patient status and ability to undergo procedure

CENTRAL CONNECTICUT CHAPTER (Davidson, 2020)

Types of Surgery

- Preventative
- Diagnostic
- Curative
- Palliative
- Restorative
- Emergency

CENTRAL CONNECTICUT CHAPTER (Davidson, 2020; Lester, 2018; Parks, 2022)

Surgical Approaches

- Open resection
 - Tumor margins
 - Sentinel lymph node biopsy
- Laparoscopic
- Robotic
- Endoscopic
- Laser
- Ablative

CENTRAL CONNECTICUT CHAPTER (Davidson, 2020; Lester, 2018)

Nursing Care Considerations

Pre-operative

- ► ERAS
- Prehabilitation
- Perioperative
- Post-operative

CENTRAL CONNECTICUT CHAPTER (Davidson, 2020; Lester, 2018; Parks, 2022)

Radiation Therapy

Radiation Oncology Team

- Radiation oncology nurse
- Radiation oncologist
- Radiation therapists
- Medical physicists and dosimetrists
- Mold and cast technicians
- Medical engineers
- Administrators

Social workers

CENTRAL CONNECTICU

CHAPIER

(Behrend, 2020)

Radiation Therapy

Atoms

CENTRAL CONNECTICUT CHAPTER (Behrend, 2020; Gosselin, 2018; Pierce & Shaftic, 2022)

lonizing Radiation in	External Beam Radiation Therapy	Linear Accelerator	X-Ray Electron particles	
Radiation Therapy	Used in multiple cancer types, most common type of radiation therapy Megavolt machines	Cobalt-60 Sealted Source	Gamma rays	
_		Large Particle Machines Cyclotron	Neutrons Protons	
	Brachytherapy	Sealed Sources	Beta particles Gamma rays	
	Radioactive therapy applied	Seeds - prostate		
	directly to the tumor site	Tandem and rings - cervical		
_	Radiopharmaceutical Therapy	Unsealed Sources	Beta particles Gamma rays	
		lodine-131 for thyroid cancer		
	Radioactive therapy taken by pill - systemic therapy			
_	Specialized Treatment	Stereotactic radiosurgery (SRS)		
	Machines	Stereotactic radiotherapy (SRT) Stereoteactic body radiation therapy (SBRT)		
NIC				
ogy Nursing Society		Cyberknife		
(Gosselin, 2018; Behrend, 2020; Table adapted from Iwamoto et al., 2012, p.17)				

Radiobiology

- Oxygen effect RT works better in well oxygenated tumors
- Linear energy transfer rate for energy to pass through matter
- Relative biological effectiveness comparison of test radiation to reference dose
- Dose rate the rate treatment is given from a machine

(Behrend, 2020; Gosselin, 2018)

CENTRAL CONNECTICU CHAPTER

Fractionation

- Repair healthy cells repair between fractions but cancer cells cannot
- Reassortment/redistribution cancer cells are forced into cell cycle and more vulnerable to damage
- Repopulation of normal cells takes place between fractions
- Reoxygenation occurs as the tumor shrinks, improving oxygen to site and the radiation effect improves
- Radiosensitizing radiation is more effective on cells that are undifferentiated and actively in mitosis

ONS Orcology Nursing Society

CHAPIER

CONNECTI

(Behrend, 2020; Gosselin, 2018)

Treatment Delivery

Treatment planning Imaging Simulation Positioning and immobilization 1 rad = 1/100 Gy = 1 cGy

(Behrend, 2020)

Images courtesy of National Cancer Institute; Jakembradford / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)

Treatment Delivery

- Intensity Modulated Radiation Therapy (IMRT)
- Image-Guided Radiation Therapy (IGRT)
- Brachytherapy

Hope~enwikibooks at English Wikibooks / CC BY-SA (https://creativecommons.org/licenses/by-sa/3.0)

(Behrend, 2020; Images courtesy of Hollis Cancer Center, Lakeland, FL)

Radiation safety

ALARA - As low as reasonably achievable

Radiation Safety Officer

Greater distance from source: less radiation received.

Behind shielding from source: less radiation received.

CENTRAL CONNECTICUT CHAPTER (Behrend, 2020; Image courtesy of nrc.gov)

Radiation Toxicity

Skin changes

- Erythema
- Dry desquamation
- Moist desquamation
- Pruritis
- Hyperpigmentation
- Alopecia

- Fatigue
- Site-specific side effects
 - Head and neck
 - Abdomen
 - Pelvis

CENTRAL CONNECTICUT CHAPTER (Behrend, 2020)

Hematopoietic Stem Cell Transplantation

U.S. Navy photo by Photographer's Mate 2nd Class Chad McNeeley. / Public domain

Cell Sources

- Bone marrow (BM)
 Peripheral blood stem cells (PBSC)
- Umbilical cord blood (UCB)

APTER

Images courtesy of US Air Force (apheresis), National Cancer Institute (cells), and BodyParts3D is made by DBCLS / CC BY-SA 2.1 JP (https://creativecommons.org/licenses/by-sa/2.1/jp/deed.en)

Hematopoietic Stem Cell Transplantation

Patient Identification
 Pre-transplant workup
 Types
 Autograft/autologous
 Allograft/allogeneic

CENTRAL CONNECTICUT CHAPTER (Shapiro, 2020)

Hematopoietic Stem Cell Transplantation: Allogeneic

- Transplant product into genetically different recipient
 - Matched sibling donor BM, PBSC, UCB
 - Identical twin donor BM, PBSC
 - Partially matched family member -BM, PBSC, UCB
 - Matched unrelated donor BM, PBSC, UCB

CENTRAL CONNECTICUT CHAPTER (Shapiro, 2020; HLA.jpg:Pdeitiker at en.wikipediaderivative work: Faigl.ladislav / Public domain)

Diseases Treated with Allografting

Leukemia

Myelodysplastic syndromes

Immunodeficiencies

Hematologic disorders

Bone marrow failure

Nonhematologic genetic disorders

Lymphoproliferative disorders

(Shapiro, 2020)

CENTRAL CONNECTICU CHAPTER

Transplantation Side Effects: Acute

- Bone marrow suppression
- Infection bacterial, viral or fungal
- Gl toxicity Nausea, vomiting, mucositis
- Hepatic sinusoidal obstruction syndrome or veno-occlusive disease (VOD)
- Organ toxicity
- Idiopathic pulmonary interstitial pneumonitis

► <u>Graft vs. Host Disease</u>

CENTRAL CONNECTICUT CHAPTER (Shapiro, 2020)

Chemotherapy

Image courtesy of the National Cancer Institute

Approaches to Chemotherapy

- Single-agent chemoCombination chemo
- Adjuvant
- Neoadjuvant
- Concurrent
- Conditioning

- Systemic chemo
- Regional chemo
- High-dose chemo
- Dose density
- Dose intensity
- Relative dose intensity

(Davis & Howard, 2020; Olsen et al., 2023)

Factors influencing Response

Tumor characteristics

- Patient characteristics
- Administration or schedule

Route:

Oral

- Subcutaneous or Intramuscular
- Intravenous
- Intrathecal or intraventricular
- Intraperitoneal
- Intravesical
- Intra-arterial
- Intrapleural

CENTRAL CONNECTICUT CHAPTER (Davis & Howard, 2020; Olsen et al., 2023)

Cell Cycle

- G₁: Post-mitotic synthesis of RNA
- S: Synthesis of DNA
- G₂: Premitotic synthesis of protein
- M: Mitosis

CENTRAL CONNECTICUT CHAPTER

(Olsen et al., 2023; Vlcek, 2022; Image courtesy of National Cancer Institute)

Cell Cycle Specific Agents

- S: Methotrexate, 5FU
- G₂: Irinotecan, doxorubicin, etoposide, bleo

M: Taxanes

CENTRAL CONNECTICUT CHAPTER (Olsen et al., 2023; Vlcek, 2022)

Alkylating Agents

- Cell cycle non-specific
- Causes breaks in DNA strands leading to cell death
- Dose limiting toxicities
 - Bone marrow suppression
 - GI toxicities
 - Organ toxicity
 - Infertility
- Examples: busulfan, carboplatin, cisplatin, cyclophosphamide, oxaliplatin, thiotepa

(Olsen et al., 2023; Vlcek, 2022)

CENTRAL CONNECTICU CHAPTER

Antimetabolites

Cell cycle specific - S phase

Interfere with DNA synthesis

- Dose-limiting toxicities:
 - Bone marrow suppression
 - GI and mucosal toxicity
- Examples: cytarabine, 5-fluorouracil, methotrexate

CHAPIER

(Olsen et al., 2023; Vlcek, 2022)

Antitumor Antibiotics

- Cell cycle nonspecific
- Binds to DNA preventing RNA synthesis
- Dose limiting toxicities:
 - Myelosuppression
 - GI toxicity
 - Alopecia

CONNECTI

- Organ toxicity cardiotoxicity, pulmonary toxicity
- Examples: doxorubicin, daunorubicin, bleomycin, mitomycin

CHAPIER

(Olsen et al., 2023 ; Vlcek, 2022)

Miscellaneous Agents

Unique actions and side effect profiles

Examples: asparaginase, arsenic

CENTRAL CONNECTICUT CHAPTER (Olsen et al., 2023)

Nitrosoureas

- Cell cycle nonspecific
- Causes breakage in DNA strand, preventing replication
- Crosses the blood-brain barrier
- Dose limiting toxicities:
 - Bone marrow suppression
 - GI toxicities
 - Organ damage renal, hepatic
- Examples: carmustine, lomustine, streptozocin

(Olsen et al., 2023 ; Vlcek, 2022)

CENTRAL CONNECTICU CHAPTER

Plant Alkaloids

- Cell cycle specific
- Types:
 - Camptothecins irinotecan, topotecan
 - Epipodophyllotoxins etoposide
 - Taxanes paclitaxel, docetaxel
 - Vinca alkaloids vincristine, vinblastine
- Toxicities:
 - Myelosuppression
 - Peripheral neuropathy

(Olsen et al., 2023; Vlcek, 2022)

CENTRAL CONNECTICU CHAPTER

Immediate Complications

Vesicant Extravasation

Drugs at risk

Prevention

Treatment

Infusion Reaction

- Hypersensitivity
- Cytokine Release Syndrome
- Anaphylaxis

CENTRAL CONNECTICUT CHAPTER (Olsen et al., 2023)

Hazardous Drug Safety

- Identifying hazardous drugs
- Compounding HDs
- Personal Protective Equipment
- Spill management
- ▶ <u>NIOSH List</u> -

CENTRAL CONNECTICUT

CHAPTER

- https://www.cdc.gov/niosh/docs/2023-129/
- https://www.cdc.gov/niosh/docs/2023-130/
- USP Chapter <800>
- Safe Handling Learning Library

Hormone Therapy

Cell cycle nonspecific

CHAPIER

- Cancer cell growth in hormone-sensitive cancers may be inhibited by suppression of select hormones
- Side effects may include headache, hot flashes, mood and appetite changes
- Classes include androgens, antiandrogens, aromatase inhibitors, progestins

(Davis & Howard, 2020; Olsen et al., 2023)

Targeted Therapy

Genomics in Cancer Care

Course > Genomic Foundations for Precision Oncology

Taxonomy

- "Glad You Asked" video series
- Learning Activities
- Clinical Practice Resources
- Biomarker Database

CENTRAL CONNECTICUT CHAPTER https://www.ons.org/learning-libraries/precision-oncology

ONS | Oncology Nu... G Google 🧳 PAORS 💁 ONS Books 🌓 PubMed - NCBI

< Back to Search Results

Q Search ONS ORG

The ONS Genomics Advisory

Board members have compiled a comprehensive list of learning resources for your quick reference!

Genomics and Precision Oncology Learning Library

Targeted Therapies

CHAPTER

cancer.gov

Targeted Therapies

- Oral antineoplastics
 - Small molecule inhibitors
 - ► TKI's
 - ► RTKs
 - ▶ mTOR
 - Proteasome inhibitors
 - PARP Inhibitors
 - ► CDK4/6

(Olsen et al., 2023; Image from <u>Breast Cancer (Auckl). 2009; 3: 47-6</u> Published online 2009 Aug 17. doi: <u>10.4137/bcbcr.s2492</u> This is an open access article distributed under the terms of the Creative Commons Attribution License (<u>http://www.creativecommons.org/licenses/by/2.0</u>) which permits unrestricted use, distribution and reproduction provided the original work is properly cited.)

Side effects

- EGFRI Skin reactions
- Cardiac toxicities
- Fluid retention
- Mucositis
- Diarrhea

Oral Antineoplastics

- Patient and family education
- Drug adherence
- Ongoing monitoring

Oral Chemotherapy Education Sheets
 Oral Anticancer Medication Toolkit

CENTRAL CONNECTICUT CHAPTER

Immunotherapy

Image courtesy of the National Cancer Institute

Cytokines

- Small protein molecules that are activated by stimulus
- Affect the growth and development of cells
- May enhance cytotoxic activity
- Examples include filgrastim, erythropoietin, interleukin, interferon

(Olsen et al., 2023)

Chimeric Antigen Receptor (CAR) T-Cell Immunotherapy

CENTRAL CONNECTICUT CHAPTER (Olsen et al., 2023; Image courtesy of the National Cancer Institute)

Monoclonal Antibodies

- Manmade antibodies sensitized to a specific antigen present on a tumor cell
- May be derived from human (daratumumab), murine (ibritumomab tiuxetan), chimeric (rituximab), or humanized (trastuzumab) antibodies
- Side effects include flu-like symptoms, skin reactions, rash, hypersensitivity reactions

CHAPTER

FRAL CONNECTICUT

Olsen et al., 2023; Image available in public domain at https://upload.wikimedia.org/wikipedia/commons/4/44/Chimeric_and_humanized_antibodies.svg

Checkpoint Inhibitors

- Block proteins that stop recognition of cancer cells by the immune system
- Side effects include immune-related adverse events
- Examples include pembrolizumab, nivolumab

(Olsen et al., 2023; Figure via license: <u>CC BY-NC 3.0</u> from https://www.researchgate.net/figure/mmune-checkpoint-inhibitors-in-cancertreatment-Notes-inability-to-activate-CTLs-in_fig1_330435495)

Adoptive Cellular Therapy

Tumor-infiltrating lymphocytes

- T cells are extracted from inside the tumor
- Cells are treated and reproduced in large numbers
- T cells are infused back into the patient and they attack the tumor cells

CENTRAL CONNECTICUT (Olsen et al., 2023; Image courtesy of the National Cancer Institute) CHAPTER

Active Immunotherapy: Oncolytic Viruses

- Oncolytic viruses are injected into a tumor
- The virus replicates inside tumor cells
- The tumor cell ruptures and contents are spilled into the surrounding environment
- Other tumor cells pick up the virus and the cycle continues
- Infection control procedures must be in place

Download the <u>Safe Handling of Oncolytic</u> <u>Viruses</u> resource from www.ons.org

CENTRAL CONNECTICUT CHAPTER

(Olsen et al., 2023)

Immune-Related Adverse Events

- Infusion reactions
- Skin rash
- Hepatic toxicity
- Fatigue
- Pneumonitis
- GI toxicity

Q Search ONS.ORG

Explore Resources Develop Your Career Network Make a Difference

< Back to Search Results

Immuno-Oncology Learning Library

The ONS Clinical Specialists have compiled a comprehensive list of resources about Immuno-Oncology for your reference.

Immuno-Oncology Learning Library

CENTRAL CONNECTICUT CHAPTER

(Olsen et al., 2023)

Access Devices

Venous Access Port

BruceBlaus / CC BY-SA (https://creativecommons.org/licenses/by-sa/4.0)

Access Devices: Purpose

- Combination therapy
- Administer therapy into multiple body systems
- Supportive therapy
- Laboratory monitoring

CENTRAL CONNECTICUT CHAPTER

Access Devices: Types

- Venous
 - Peripheral
 - ► Midline
 - Short-term central
 - Long-term central
 - Tunneled
 - Implanted port
 - ► PICC

(Camp-Sorrell, 2020; Camp-Sorrell & Matey, 2017)

Access Devices: Types

- ► <u>Arterial</u>
- ▶ <u>Peritoneal</u>
- ▶ <u>Intraventricular</u>
- ► <u>Epidural</u>
- ▶ Intrapleural

CENTRAL CONNECTICUT CHAPTER

Access Devices: Complications

- Infection
- Occlusion
- Catheter Tip migration
- Air embolism

- PneumothoraxArterial injury
- Phlebitis
- Extravasation
- Arrythmia

CENTRAL CONNECTICUT CHAPTER

Access Devices: Assessment

- Identify potential candidates
- Physical exam
- Psychosocial exam

CENTRAL CONNECTICUT CHAPTER

References

Each citation noted refers to a chapter in one of the following texts:

Brant, JM. (2020). Core Curriculum for Oncology Nursing (6th ed). Elsevier.

Camp-Sorrell, D., & Matey, L. (Eds.). (2017). Access device standards of practice for oncology nursing. Oncology Nursing Society.

Eggert, J.A., Byar, K.L., Parks, L.S. (2022). *Cancer Basics* (3rd ed). Oncology Nursing Society.

McQuestion, M., Drapek, L.C., Witt, M.E. (2021). *Manual for Radiation Oncology Nursing Practice and Education* (5th ed.). Oncology Nursing Society.

Olsen, M., LeFebvre, K., Walker, S. L., & Prechtel Dunphy, E. (2023). *Chemotherapy and immunotherapy: Guidelines and recommendations for practice* (2nd ed.). Oncology Nursing Society.

Polovich, M & Olsen, MM. (2018). Safe Handling of Hazardous Drugs (3rd ed). Oncology Nursing Society.

Schmit-Pokorny, K. & Eisenberg, S. (2020). *Hematopoietic Stem Cell Transplantation: A Manual for Nursing Practice* (3rd ed.). Oncology Nursing Society.

Yarbro, CH, Wujcik, D & Gobel, BH. (2018). *Cancer Nursing Principles and Practice* (8th ed). Jones and Bartlett.

CENTRAL CONNECTICUT CHAPTER